I have some database objects that are fully linked to each other as dependencies. What i want to do is to write an algorithm to retrieve that information and represent all this as a graph. Right now a pseudocode should do the trick for me , then after i should be able to write the python implementation. Th开发者_高级运维is seems like a recursive algorithm and this is where i am stuck!
Input (Obj)
list = obj.getDependencies():
if list is empty:
return obj
else
for items in list:
list1 = item.getDependencies()
if list1 is empty:
return item
else:
list2 = item.getDependencies()
......
My mind blows up at this point!!! how can i re-write this algorithm
If I understood correctly, you want only the leaf nodes of the tree (those with no more dependencies). Is that the case? An example using an auxiliar struct to make it runnable:
class Struct:
def __init__(self, **entries):
self.__dict__.update(entries)
obj = Struct(
name="1",
get_dependencies=lambda: [
Struct(name="11", get_dependencies=lambda: []),
Struct(name="12", get_dependencies=lambda: [
Struct(name="121", get_dependencies=lambda: [])
])
])
def get_all_dependencies(obj):
ds = obj.get_dependencies()
if not ds:
yield obj
for o in ds:
for o2 in get_all_dependencies(o):
yield o2
print [x.name for x in get_all_dependencies(obj)]
# ['11', '121']
If you like the compact code that itertools makes possible, a different implementation with the exact same idea:
import itertools
def flatten(it):
return itertools.chain.from_iterable(it)
def get_all_dependencies(obj):
ds = obj.get_dependencies()
return ([obj] if not ds else flatten(get_all_dependencies(o) for o in ds))
print [x.name for x in get_all_dependencies(obj)]
# ['11', '121']
精彩评论